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Objectives

D3

Static behaviour 
expression

Can we express static 
behavioural constraints 

Static behaviour 
inference

Can we infer static 
behaviours from 
monitoring

Dynamic  
behaviour 
inference

Can we infer dynamic 
behaviours from 
monitoring

Can we identify IoT-like devices from NetMon data?

Can we categorise behaviours of IoT-like devices from 
NetMon data?  

● Easy to defend

● Difficult to defend

Can we auto-magically build D3 expressions?

● D3 Static behaviour expressions* 
● D3 Static behaviour inference*

● D3 Dynamic behaviour inference
○ Sequence mining from ML

○ Symbolic rule induction from ML

*Not covered in this presentation

Good 

device

Stinker 

device

Vision: Power intelligent gateways so they can 

pro-actively defend IoT devices

3



Background

● Turing’s little machine is finite, but permits an 
infinite number of programs (א)

○ This allows an infinite number of “good” programs 

(c.f. How many Even numbers?);

○ and an infinite number of “bad” programs 

(c.f. How many Odd numbers?)

○ Can we even agree on what are good and bad programs?

● Cyber defenders have a very difficult task!
○ Maybe they should focus on defending devices that are 

easier (those that have less volatile behaviours)

Hypothesis I – IoT devices should have limited dynamic 

behaviours (i.e. low volatility)

Hypothesis II – NetMon data can be used to induce 

descriptions of dynamic device behaviours 4



Identifying IoT-like devices from NetMon data

Capture NetMon data Identify target IoT device
Visualise/Select patterns to 

explain

Induce Behavioural D3

(ML/Inductive Logic 

Programming) 5



Capturing NetMon data

NetMon system

● Based on the IDS Zeek (formerly called Bro)

● Comprehensive event-relational meta-data 

extracted from PCAP-like captured network traffic

● conn table is the master table

○ Millisecond timestamps

○ Unique UID keys into service specific tables 

● Many tables have common fields

ts 2021-01-04 14:59:39

uid CNfInROV9fQ6nP4Ve

id.orig_h 192.168.16.39

id.orig_p 5353

id.resp_h 224.0.0.251

id.resp_p 5353

proto udp

service dns

... ...

NetMon device
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Volatility analysis of NetMon data

NetMon device deployed into a small business

● 6 month’s data acquired

● 28 to 185 active networked devices per day

● 63K to 562K logged connection events per day

Volatility measurements based on the Simple Good-

Turing (SGT) frequency estimator

● SGT Volatility contains components separate 

from aggregate rates

NetMon device
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Identifying IoT-like devices from NetMon data

Can we identify an IoT-like device from 

Volatility?

● Rank all 185 devices observed over 6 

months by mean volatility (log scale)

● Gather information available on lowest 

ranked devices

● Best efforts identification of device type

● Definitely identified the one IoT device 

known to exist in the network – the 

NetMon device itself

● Strong support for having identified other 

devices (Routers, printers, …)

Low Volatility 

IOT device
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Characterizing the behaviour of an IoT device from NetMon data

Capture NetMon data Identify target IoT device
Visualise/Select patterns to 

explain

Induce Behavioural D3

(ML/Inductive Logic 

Programming) 9



Extracting sequence patterns from NetMon data

● Use Zeek’s connection table to build tokens

for each connection event

● Generate unique MD5-based 9 digit numeric 

token_uid

● (… some other raw information in a CSV file)

● (initially) ignore timestamps, and collect the 

sequence of token_uids into a single 

training file -- with one token_uid per line

● Run Sequitur on the training file

● Parse Sequitur’s hierarchical grammar

● Visualise / explore the training file and the 

original training file in the context of the 

hierarchical grammar and the extracted 

repeating subsequences. (next slide)

● Token from conn fields
<id.orig_h>_<id.resp_h>_<id.resp_p>_<proto>_<service>

"10.0.0.145_10.0.0.137_53_udp_dns"

● token_uid: 271311686

● CSV file (direct from AWS Athena SQL)

"Timestamp","token","token_uid","year","month","day","conn_uid"
"2021-01-01 00:00:03.135","10.0.0.145_169.254.169.254_80_tcp_-","350344446","2021","1","1","CCsBTv1Te0if5EF777"
"2021-01-01 00:00:03.230","10.0.0.145_10.0.0.137_53_udp_dns","271311686","2021","1","1","CJTneEzIgNlvQyjJ2"

:
"2021-01-01 00:00:04.029","10.0.0.145_10.0.0.137_53_udp_dns","271311686","2021","1","1","CepU6O1S80ZPwXFQA7"

:

● Sequitur input file (training file)

350344446
271311686

:
271311686

:
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Source training CSV file 
File explorer style 

Hierarchical grammar 

navigator

● Folders represent 

rules

● Files represent 

tokens

Visual representation of 

training sequence of tokens 

● Background 

rectangles 

represent rules

Each rule is a 

unique colour

NB: White indicates 

that the token is 

not part of any 

rule

● Inside squares 

represent tokens

Each token is a 

unique colour

Tool-tip displays more 

information on particular 

token/rule 

50th token

100th token

2400th token

Black underline represents 

the first token of a new 

hour 

Grammar node detail

Shows root - raw sequitur 

grammar 

Source data

● NetMon from single 

day 2021-01-01; where 

IP address 10.0.0.145 

is mentioned (a brAIn-

box)

● 3232 events (forming 

tokens/token_uids)

Hierarchical grammar

● [<9 digit integer>] is 

the raw token_uid

● Integer without [] refers 

to sequitur’s rule id

● 366 rules (and the start 

sequence rule 0)

Sequitur: NetMon events →Sequence extraction
Visualisation
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● Inductive Logic Programming is a form of machine learning which uses 

logic to describe the concepts

● From a family of computer programs that follow the

Specific (observations) → General (laws) idea

● ILP uses symbolic logic as a representation language
● It is the study of constructing plausible hypotheses in logic from specific 

observations

● Draws on results from
○ Logic Programming
○ Statistics
○ Design of algorithms

Inductive Logic Programming: Sequences → Behavioural Rules

12



ILP: An illustration

(Inductive) LP

Henry is the father of 

Jane

Jane is the parent of 

John

Jane is the parent of 

Rob

Henry is the 

grandfather of John

Henry is the 

grandfather of Rob

(Deductive) LP

x is the grandfather of y

if

x is the father of some z

and

z is the parent of y

Henry is the father of 

Jane

Jane is the parent of 

John

Jane is the parent of 

Rob

Henry is the grandfather of John

Henry is the grandfather of Rob

x is the grandfather of y if

x is the father of some z and

z is the parent of y

Examples Background

Hypothesis
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Feeding the ILP the Sequence data

Background “Knowledge”

● 366 Sequence ‘rules’

● Underlying network metadata

● Raw Source data - Recorded 2021-01-01; 

where IP address 10.0.0.145 is mentioned 

(a brAIn-box)

● 3232 events (forming tokens/token_uids)

Examples from the hierarchical sequence 

grammar to be explained

● Rule 8 occurs 18 times at event positions 

(0=midnight) 

[21,71,122,177,228,295,346,402,960,1118, 

1274,1533,1835,2000,2153,2452,2743,3051

]

21st token

363783709

24th token

363783709

22nd token

100233664

23rd token

100233664

Rule

8
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ILPing Sequence ‘Rule’ 8 – 55 logical elements

Sequence A is interesting if:

A has B events,

A has 4 events,

A has start uuid C,

A starts at position D,

event C precedes event E,

event C has port service F,

event C has port service dns,

event C has service G,

event C has service dns,

event C has dest name H,

event C has dest name name_not_found,

event E precedes event I,

event E has port service J,

event E has port service ssh,

event E has service K,

event E has service -,

event E has dest name L,

event E has dest name ec2-3-209-99-

56.compute-1.amazonaws.com,

event E has dest suffix M,

event E has dest suffix amazonaws.com,

:

:

<SNIP>

:

event P precedes event S,

event P has port service Q,

event P has port service https,

event P has service K,

event P has service -,

event P has dest name R,

event P has dest name s3-ap-southeast-

2-w.amazonaws.com,

event P has dest suffix M,

event P has dest suffix amazonaws.com.

Procedure

1) Specifically explain only example 8
2) Search through a space of logically more 

general alternatives for a more succinct rule 

that is “good” that does not unnecessarily  
cover other sequence rules
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Understanding Generalisation of Sequence ‘Rule’ 8

The second event in the
sequence is a SSH connection to
a consistent AWS host.

How well does it fit the data?

The Extent of proposed hypothesis is that it 

covers (explains) Sequence Rule 8, but also 
sequence rules 193 and 318.  On inspection, it 

seems that sequence rules 193 and 318 are 

spurious extensions of sequence rule 8 
generated by sequitur.

● Curious temporal pattern
○ The timestamps of all events that are covered 

by the hypothesis occur on average at 10.02 
minutes past the hour (SD=0.005 minutes)

○ Maybe this device is beaconing using SSH

Sequence A is interesting if:

A has start uuid B and

event B precedes event C and

event C has port service ssh and

event C has dest name ec2-3-209-99-

56.compute-1.amazonaws.com.

Hypothesis
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What happens next?

● Turn the focus to another unexplained 

sequence rule, to categorise other 

behaviours of the device 

● Designate behaviours as expected (good) 

and unexpected (bad)

● Use the ILP generated rules as triggers for 

detecting unexpected behaviours

● Generate D3 statements that can be 

enforced by the IoT gateway
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Future work

● Additional ILP background knowledge
○ Incorporate beaconing determination into potential 

hypotheses

○ Delve into the full NetMon relational data model

○ Add other Security Analytics data

○ Add Cyber Forensics capabilities 

● Integrate the ILP with the Graphical prototype
○ Show explained sequences faded, whilst highlighting yet 

to be explained events

● Generation of D3 statements 

● Automate the process further
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Capture NetMon data

Identify target IoT device
Visualise/Select patterns to 

explain

Induce Behavioural D3

(ML/Inductive Logic 

Programming)

Control IOT Behaviours
Collaborative specif ication

of D3
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