
Intelligently categorising behaviours of

IoT-like devices from NetMon data
Steve Moyle

University of Oxford

Outline

● Objectives

● Background

● Identifying IoT-like devices from NetMon data

● Intelligent Behaviour Categorisation
○ Sequitur: NetMon events →Sequence extraction

○ Inductive Logic Programming: Sequences → Behavioural Rules

● Future directions

2

Objectives

D3

Static behaviour
expression

Can we express static
behavioural constraints

Static behaviour
inference

Can we infer static
behaviours from
monitoring

Dynamic
behaviour
inference

Can we infer dynamic
behaviours from
monitoring

Can we identify IoT-like devices from NetMon data?

Can we categorise behaviours of IoT-like devices from
NetMon data?

● Easy to defend

● Difficult to defend

Can we auto-magically build D3 expressions?

● D3 Static behaviour expressions*
● D3 Static behaviour inference*

● D3 Dynamic behaviour inference
○ Sequence mining from ML

○ Symbolic rule induction from ML

*Not covered in this presentation

Good

device

Stinker

device

Vision: Power intelligent gateways so they can

pro-actively defend IoT devices

3

Background

● Turing’s little machine is finite, but permits an
infinite number of programs (א)

○ This allows an infinite number of “good” programs

(c.f. How many Even numbers?);

○ and an infinite number of “bad” programs

(c.f. How many Odd numbers?)

○ Can we even agree on what are good and bad programs?

● Cyber defenders have a very difficult task!
○ Maybe they should focus on defending devices that are

easier (those that have less volatile behaviours)

Hypothesis I – IoT devices should have limited dynamic

behaviours (i.e. low volatility)

Hypothesis II – NetMon data can be used to induce

descriptions of dynamic device behaviours 4

Identifying IoT-like devices from NetMon data

Capture NetMon data Identify target IoT device
Visualise/Select patterns to

explain

Induce Behavioural D3

(ML/Inductive Logic

Programming) 5

Capturing NetMon data

NetMon system

● Based on the IDS Zeek (formerly called Bro)

● Comprehensive event-relational meta-data

extracted from PCAP-like captured network traffic

● conn table is the master table

○ Millisecond timestamps

○ Unique UID keys into service specific tables

● Many tables have common fields

ts 2021-01-04 14:59:39

uid CNfInROV9fQ6nP4Ve

id.orig_h 192.168.16.39

id.orig_p 5353

id.resp_h 224.0.0.251

id.resp_p 5353

proto udp

service dns

... ...

NetMon device

6

Volatility analysis of NetMon data

NetMon device deployed into a small business

● 6 month’s data acquired

● 28 to 185 active networked devices per day

● 63K to 562K logged connection events per day

Volatility measurements based on the Simple Good-

Turing (SGT) frequency estimator

● SGT Volatility contains components separate

from aggregate rates

NetMon device

7

Identifying IoT-like devices from NetMon data

Can we identify an IoT-like device from

Volatility?

● Rank all 185 devices observed over 6

months by mean volatility (log scale)

● Gather information available on lowest

ranked devices

● Best efforts identification of device type

● Definitely identified the one IoT device

known to exist in the network – the

NetMon device itself

● Strong support for having identified other

devices (Routers, printers, …)

Low Volatility

IOT device
8

Characterizing the behaviour of an IoT device from NetMon data

Capture NetMon data Identify target IoT device
Visualise/Select patterns to

explain

Induce Behavioural D3

(ML/Inductive Logic

Programming) 9

Extracting sequence patterns from NetMon data

● Use Zeek’s connection table to build tokens

for each connection event

● Generate unique MD5-based 9 digit numeric

token_uid

● (… some other raw information in a CSV file)

● (initially) ignore timestamps, and collect the

sequence of token_uids into a single

training file -- with one token_uid per line

● Run Sequitur on the training file

● Parse Sequitur’s hierarchical grammar

● Visualise / explore the training file and the

original training file in the context of the

hierarchical grammar and the extracted

repeating subsequences. (next slide)

● Token from conn fields
<id.orig_h>_<id.resp_h>_<id.resp_p>_<proto>_<service>

"10.0.0.145_10.0.0.137_53_udp_dns"

● token_uid: 271311686

● CSV file (direct from AWS Athena SQL)

"Timestamp","token","token_uid","year","month","day","conn_uid"
"2021-01-01 00:00:03.135","10.0.0.145_169.254.169.254_80_tcp_-","350344446","2021","1","1","CCsBTv1Te0if5EF777"
"2021-01-01 00:00:03.230","10.0.0.145_10.0.0.137_53_udp_dns","271311686","2021","1","1","CJTneEzIgNlvQyjJ2"

:
"2021-01-01 00:00:04.029","10.0.0.145_10.0.0.137_53_udp_dns","271311686","2021","1","1","CepU6O1S80ZPwXFQA7"

:

● Sequitur input file (training file)

350344446
271311686

:
271311686

:

10

Source training CSV file
File explorer style

Hierarchical grammar

navigator

● Folders represent

rules

● Files represent

tokens

Visual representation of

training sequence of tokens

● Background

rectangles

represent rules

Each rule is a

unique colour

NB: White indicates

that the token is

not part of any

rule

● Inside squares

represent tokens

Each token is a

unique colour

Tool-tip displays more

information on particular

token/rule

50th token

100th token

2400th token

Black underline represents

the first token of a new

hour

Grammar node detail

Shows root - raw sequitur

grammar

Source data

● NetMon from single

day 2021-01-01; where

IP address 10.0.0.145

is mentioned (a brAIn-

box)

● 3232 events (forming

tokens/token_uids)

Hierarchical grammar

● [<9 digit integer>] is

the raw token_uid

● Integer without [] refers

to sequitur’s rule id

● 366 rules (and the start

sequence rule 0)

Sequitur: NetMon events →Sequence extraction
Visualisation

11

● Inductive Logic Programming is a form of machine learning which uses

logic to describe the concepts

● From a family of computer programs that follow the

Specific (observations) → General (laws) idea

● ILP uses symbolic logic as a representation language
● It is the study of constructing plausible hypotheses in logic from specific

observations

● Draws on results from
○ Logic Programming
○ Statistics
○ Design of algorithms

Inductive Logic Programming: Sequences → Behavioural Rules

12

ILP: An illustration

(Inductive) LP

Henry is the father of

Jane

Jane is the parent of

John

Jane is the parent of

Rob

Henry is the

grandfather of John

Henry is the

grandfather of Rob

(Deductive) LP

x is the grandfather of y

if

x is the father of some z

and

z is the parent of y

Henry is the father of

Jane

Jane is the parent of

John

Jane is the parent of

Rob

Henry is the grandfather of John

Henry is the grandfather of Rob

x is the grandfather of y if

x is the father of some z and

z is the parent of y

Examples Background

Hypothesis

13

Feeding the ILP the Sequence data

Background “Knowledge”

● 366 Sequence ‘rules’

● Underlying network metadata

● Raw Source data - Recorded 2021-01-01;

where IP address 10.0.0.145 is mentioned

(a brAIn-box)

● 3232 events (forming tokens/token_uids)

Examples from the hierarchical sequence

grammar to be explained

● Rule 8 occurs 18 times at event positions

(0=midnight)

[21,71,122,177,228,295,346,402,960,1118,

1274,1533,1835,2000,2153,2452,2743,3051

]

21st token

363783709

24th token

363783709

22nd token

100233664

23rd token

100233664

Rule

8

14

ILPing Sequence ‘Rule’ 8 – 55 logical elements

Sequence A is interesting if:

A has B events,

A has 4 events,

A has start uuid C,

A starts at position D,

event C precedes event E,

event C has port service F,

event C has port service dns,

event C has service G,

event C has service dns,

event C has dest name H,

event C has dest name name_not_found,

event E precedes event I,

event E has port service J,

event E has port service ssh,

event E has service K,

event E has service -,

event E has dest name L,

event E has dest name ec2-3-209-99-

56.compute-1.amazonaws.com,

event E has dest suffix M,

event E has dest suffix amazonaws.com,

:

:

<SNIP>

:

event P precedes event S,

event P has port service Q,

event P has port service https,

event P has service K,

event P has service -,

event P has dest name R,

event P has dest name s3-ap-southeast-

2-w.amazonaws.com,

event P has dest suffix M,

event P has dest suffix amazonaws.com.

Procedure

1) Specifically explain only example 8
2) Search through a space of logically more

general alternatives for a more succinct rule

that is “good” that does not unnecessarily
cover other sequence rules

15

Understanding Generalisation of Sequence ‘Rule’ 8

The second event in the
sequence is a SSH connection to
a consistent AWS host.

How well does it fit the data?

The Extent of proposed hypothesis is that it

covers (explains) Sequence Rule 8, but also
sequence rules 193 and 318. On inspection, it

seems that sequence rules 193 and 318 are

spurious extensions of sequence rule 8
generated by sequitur.

● Curious temporal pattern
○ The timestamps of all events that are covered

by the hypothesis occur on average at 10.02
minutes past the hour (SD=0.005 minutes)

○ Maybe this device is beaconing using SSH

Sequence A is interesting if:

A has start uuid B and

event B precedes event C and

event C has port service ssh and

event C has dest name ec2-3-209-99-

56.compute-1.amazonaws.com.

Hypothesis

16

What happens next?

● Turn the focus to another unexplained

sequence rule, to categorise other

behaviours of the device

● Designate behaviours as expected (good)

and unexpected (bad)

● Use the ILP generated rules as triggers for

detecting unexpected behaviours

● Generate D3 statements that can be

enforced by the IoT gateway

17

Future work

● Additional ILP background knowledge
○ Incorporate beaconing determination into potential

hypotheses

○ Delve into the full NetMon relational data model

○ Add other Security Analytics data

○ Add Cyber Forensics capabilities

● Integrate the ILP with the Graphical prototype
○ Show explained sequences faded, whilst highlighting yet

to be explained events

● Generation of D3 statements

● Automate the process further

18

Capture NetMon data

Identify target IoT device
Visualise/Select patterns to

explain

Induce Behavioural D3

(ML/Inductive Logic

Programming)

Control IOT Behaviours
Collaborative specif ication

of D3

19

